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Abstract

Background: The administrative process associated with clinical trial activation has been criticized as costly,
complex, and time-consuming. Prior research has concentrated on identifying administrative barriers and
proposing various solutions to reduce activation time, and consequently associated costs. Here, we expand on
previous research by incorporating social network analysis and discrete-event simulation to support process
improvement decision-making.

Methods: We searched for all operational data associated with the administrative process of activating industry-
sponsored clinical trials at the Office of Clinical Research of the University of South Florida in Tampa, Florida. We
limited the search to those trials initiated and activated between July 2011 and June 2012. We described the
process using value stream mapping, studied the interactions of the various process participants using social
network analysis, and modeled potential process modifications using discrete-event simulation.

Results: The administrative process comprised 5 sub-processes, 30 activities, 11 decision points, 5 loops, and 8
participants. The mean activation time was 76.6 days. Rate-limiting sub-processes were those of contract and
budget development. Key participants during contract and budget development were the Office of Clinical
Research, sponsors, and the principal investigator. Simulation results indicate that slight increments on the number of
trials, arriving to the Office of Clinical Research, would increase activation time by 11 %. Also, incrementing the
efficiency of contract and budget development would reduce the activation time by 28 %. Finally, better synchronization
between contract and budget development would reduce time spent on batching documentation; however, no
improvements would be attained in total activation time.

Conclusion: The presented process improvement analytic framework not only identifies administrative barriers,
but also helps to devise and evaluate potential improvement scenarios. The strength of our framework lies in its
system analysis approach that recognizes the stochastic duration of the activation process and the interdependence
between process activities and entities.
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Background
Clinical trials are the means to transform scientific dis-
covery into medical utility, and they are designed to at-
tain evidence on safety, efficiency, and effectiveness of
investigated interventions. Clinical trials have been cred-
ited with major therapeutic and diagnostic discoveries
and improvement in health outcomes including life ex-
pectancy [1, 2]. However, despite these well-documented

medical advances, clinical trials have been challenged for
exhibiting less than efficient administrative procedures
preceding trial recruitment that are costly [3–7], com-
plex [8–11], and time-consuming [5, 7, 12–14].
Evidence to these claims include published work such

as a 2005 review demonstrating that activating a trial
(i.e., allow for patient accrual) requires on average 32
person hours per patient accrued, which in 2005 was
roughly translated into a cost of US$1,500 per patient
enrolled [15]. Since 2005 costs associated with trial
activation have risen considerably, reaching approxi-
mately US$50,000 per trial, regardless of the number of
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patients accrued [7]. As a result, the costs of clinical re-
search have increased between 31 and 88 % from 2008
to 2013, depending on trial phase [16]. This sizable
amount is exonerated if we consider that the adminis-
trative process associated with trial activation in aca-
demic medical settings includes up to 30 different
activities, involves up to 11 participants, and lasts on
average, from 44 to 172 days [6, 8, 17, 18]. Such com-
plexity translates into delayed trial activation, which af-
fects patient enrollment goals [19, 20] and diminishes
the usefulness of trials by failing to attain evidence of
investigated interventions on time [21].
Several authors have scrutinized the efficiency of trial

activation. Although early studies concentrated on iden-
tifying administrative barriers and provided little to no
recommendations for improvement [6, 8–10], more re-
cent studies have shed light on strategies to improve effi-
ciency by using a combination of six sigma and lean
thinking methods that remove non-value-added activ-
ities in the administrative process [14, 17, 18, 22]. These
studies are of importance for effective trial management
and resource utilization; however, their results might not
be applicable across all clinical research settings and
thus, triggering the need for models that support process
improvement decision-making. Modeling frameworks
providing insights as to where efficiency improvements
can be attained before implementing devised improve-
ment scenarios can help to strategize resources and de-
sign a better trial activation process. To minimize the
time and resources needed to move trials from concept
development to patient enrollment, it is necessary to
have a profound understanding of the activation process
and of the potential impact of devised improvement sce-
narios. Integrating concepts of business process modeling
in the analysis of operational efficiency of trial activation,
as others have successfully accomplished (e.g., [23, 24]), is
expected to provide useful insights to streamline the ad-
ministrative process.
This paper presents a process improvement frame-

work that relies on formal techniques such as process
mapping, social network analysis (SNA), and discrete-
event simulation (DES). Our work expands on previous
research by incorporating the use of SNA and DES to
create an analytic framework to support process im-
provement decision-making. The combination of these
techniques allows for an extensive understanding of the
potential impact of devised improvement scenarios. The
presented framework is applied to an illustrative case, the
Office of Clinical Research (OCR) at the University of
South Florida (USF) in Tampa, Florida, and a number of
interesting results and managerial insights are discussed
for clinical research administrators. The combination of
these techniques formed a novel approach that can be
used to understand drivers of process performance, and to

ultimately improve overall efficiency of the opening of
clinical trials.

Methods
To assist the reader, we define here the terminology used
throughout this paper. We use the terms administrative
process, or process, to denote the overall series of ad-
ministrative activities required to move a trial from con-
cept development to trial activation. Trial activation, or
activation, is achieved when the trial is allowed to enroll
patients. The term “sub-process” refers to a distinct sec-
tion of the administrative process. As explained in the
results section, we have identified five sub-processes: Ini-
tial Preparation; Contract Negotiation; Budget Negoti-
ation; Preparation for Western Institutional Review Board
submission; and Final Preparation, which includes the
final approvals by the principal investigator (PI), the
USF’s Division of Sponsored Research and the trial
sponsor. Activity denotes the smallest amount of work
within a sub-process. Each sub-process is comprised of
a finite set of activities. A participant is any person or
entity with a role in an activity. Activation time is time
duration from the OCR’s study protocol receipt to trial
activation. Idle time is the time spent by each trial from
the end of a sub-process until the start of the next one
(e.g., waiting for approval signatures or paperwork de-
lays). Finally, queue length denotes the average number
of trials waiting to be processed at each sub-process.

Study setting and study team
This study was conducted at the OCR of the University
of South Florida in Tampa, Florida [25]. The study team
was comprised of four process improvement specialists
from the USF’s College of Engineering, a clinical research
administrator from the OCR, and a physician from the
USF’s College of Medicine.

Dataset
We searched the OCR database for all industry-sponsored
trials initiated and activated within the period of July 2011
and June 2012 (see Additional file 1). These trials included
extensive information on duration of each activity and on
interactions between participants. For each trial, we ex-
tracted names and time stamps of all activities pertinent
to trial activation such as receipts, submissions, and ap-
provals of regulatory documentation. We also extracted
time stamps and volume of interactions between partici-
pants from communication logs, written documentation,
and email communication.

Process mapping and timing analysis
We used value stream mapping (VSM) to create an
overview of the administrative process associated with
trial activation, starting from concept development and
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ending with trial activation. By using VSM we can iden-
tify, and potentially eliminate or modify, non-value-
added activities in the administrative process [5–10].
These activities may represent waste of resources such
as time, money, and effort. According to Dilts ([8], p.
4549), a non-value-added activity is an activity that does
not contribute to the research integrity, patient safety, or
usefulness of the clinical trial such as paperwork delays,
batching of documentation, or paper movements. We
validated the integrity and accuracy of the process maps
with senior OCR personnel. Additionally, activity time
stamps were used to compute the duration of each sub-
process and of the overall process. We calculated de-
scriptive statistics to measure central tendency (i.e., aver-
age and median) and dispersion (i.e., standard deviation
and interquartile range).

Social network analysis
Descriptive models relying on process mapping and tim-
ing analysis have been used by previous authors to study
the administrative process [6, 8–10]. Despite their use-
fulness, such models are not primarily designed to cap-
ture any information regarding participant interactions.
Therefore, potentially significant information regarding
the social environment at which the administrative
process is performed is overlooked. As a result, strat-
egies aiming at improving process efficiency may be
misdirected. The question we aim to answer is: Who
needs to be involved in the improvement process? By
using SNA, we can analyze the interactions between
OCR and other participants and identify those who
must be involved in the improvement process.
SNA is developed to understand social networks and

reveal information regarding participants and their inter-
actions. It has been extensively used to explain phenom-
ena such as scientific interaction [26] and information
exchange [27]. A social network consists of a set of
nodes and ties. In this study, a node represents a partici-
pant in the administrative process and a tie represents
an interaction between participants. The direction of a tie
denotes the direction of an interaction. For instance, a PI
emailing a research protocol to the OCR for revision
would be classified as an interaction from PI to OCR.
We focused the analysis on centrality measures, which

show the importance and influence of a participant in
the process. We hypothesize that a participant’s central-
ity is highly correlated to the participant’s workload and,
therefore, improvement strategies should target the most
central participants. The centrality measures we used are
those of degree, closeness, betweenness, and Bonacich’s
Power Index [28]. Degree is a measure of volume of
interactions that a participant has with others. High out-
degree indicates that a participant initiates many interac-
tions (i.e., sends documents to many other participants)

and a high in-degree indicates that a participant receives
many interactions (i.e., receives documents from many
other participants). Closeness is a measure of distance
between participants. High out-closeness implies that a
participant can reach others in few steps. High in-
closeness implies that others can reach a participant in
few steps. We interpret closeness as the distance that a
document has to travel before it reaches the intended re-
ceiver. Presumably, small closeness denotes faster flow
of information. Betweenness is a measure of how import-
ant a participant is in connecting other participants. Par-
ticipants with high betweenness are very important to
the network to ensure connectivity; without it, some in-
teractions may never occur. Finally, Bonacich’s Power
Index measures the power of each participant in the net-
work based on its capacity to connect with others. High
Bonacich’s Power Index indicates that the neighborhood
of a participant is not well-connected. The rationale be-
hind this index is that a participant is more powerful if it
is connecting other participants that are not connected
among them. We used NetDraw [29] to compute central-
ity measures and to draw social network diagrams.

Simulation model
The outputs of process mapping, timing analysis, and
SNA can offer descriptive information of the clinical trial
activation process. The process map described the en-
tities, events, and resources needed to complete each ac-
tivity, and the timing analysis provided details on the
time between arrival of trials to the OCR as well as the
processing times in each sub-process. This information
is practically an observation of the current status of the
system and ultimately can be used to assist in devising
scenarios for process improvement. These scenarios can
be implemented in a trial-and-error manner (i.e., imple-
menting without prior evidence of improvement), or fur-
ther studied using computer simulations. DES is used to
simulate and compare the validity, efficiency, and effect-
iveness of various scenarios. Compared to other model-
ing techniques such as queuing theory, DES models are
more flexible, provide more information on results, and
are easier to build [30].
The administrative process to activate a clinical trial

can be seen as a sequence of discrete events with sto-
chastic duration in which regulatory documentation (i.e.,
entities) travels through several activities, decisions, and
loops until all regulatory committees, sponsors, and PIs
declare the clinical trial ready for patient enrollment.
There are uncertainties of process performance and sys-
tem workload, as well as dependence between process
activities and regulatory documentation. Such depend-
ency is seen, for example, when the trial activation can
only continue if both the non-disclosure agreements and
the trial budget are agreed upon. In the presence of
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operational data, DES represents a suitable and more
flexible modeling approach than others [31]. Although
decision-makers might be skeptical about the validity of
a DES model, there is no other way to provide a realistic
estimate of the impact of improvement scenarios before
actual implementation. Other modeling techniques, such
as decision trees, impose rigid structures based on mu-
tually exclusive events (i.e., process activities) and they
do not explicitly consider time. An alternative approach
that considers time is Markov chains; however, this re-
tains the structural rigidity making it difficult to repre-
sent the administrative process. DES is preferable over
decision trees and Markov chains because there is no
assumption of independence between entities [32]. In
the administrative process associated with trial activa-
tion, the entities are regulatory documentation seeking
for approval; therefore, incorporating interactions in the
modeling approach becomes a necessity. In addition, in
DES models full probabilistic analysis take place naturally.
All inputs can be defined using any probability density
function allowing the incorporation of both real variation
(e.g., in the processing time of a trial budget) and uncer-
tainty (e.g., in the effect of each improvement scenario).
Hence the use of DES is preferable over other modeling
techniques to aid the process improvement decision-
making.
DES requires definition of entities, events, and re-

sources. In our simulation model, which is described in
detail in the Additional file 2, entities represent regula-
tory documentation required for trial activation (e.g.,
non-disclosure agreements and clinical trial budget);
events represent the preparation, revision, and approval
of such documentation; and resources represent the
personnel working on such events. The performance

measures utilized to assess process efficiency are acti-
vation time, idle time, and queue lengths.
Different scenarios with the potential of affecting sys-

tem performance were devised. These scenarios were
built using resource capacity and processing time distri-
butions as input variables. All simulation analyses were
performed using Arena [33]. Time between arrivals and
processing times were modeled with theoretical probabil-
ity density functions. The choice of appropriate density
functions was based on minimizing the sum of square er-
rors as described in Table 1. Power analysis showed that
38 replications ensured less than 5 % error in our per-
formance measures. The simulation length was 1 year
(365 calendar days) preceded by a warm-up period of
4 years (1460 calendar days).

Results
Dataset
We identified 147 clinical trials in the time period of
July 2011 and June 2012. We extracted time stamp data
of all trials started and completed during the study
period, resulting in a final sample of 78 out of 147 tri-
als. A total of 69 trials were excluded from time stamp
extraction due to having missing data (n = 16), being
still in process (n = 52), or because they were terminated
for reasons beyond the scope of this study (n = 1). Data on
the frequency of interactions between participants were
extracted out of communication logs of those 78 trials.
During post-hoc analyses no significant differences in
the durations of Contract Negotiation (54.91 versus 57.95,
P value = 0.6993) and Budget Negotiation (46.3 versus
60.76, P value = 0.0712) after adding duration data of the
clinical trials still in process. The independent t test for

Table 1 Distribution fitting for processing times at each sub-process and activity in the administrative process associated with
industry-sponsored clinical trial activation at the University of South Florida. In the simulation software Arena, the default random
number stream 10 was used to generate the duration of each sub-process

Subprocess (activity) Squared error Parameters Arena random
number stream

Initial Preparation

OCR sends documents - Uniform (0.5, 1.0)a 10

P&L reviews - Triangular (1.0, 8.0, 21.0)a 10

PI prepares documents - Triangular (1.0, 2.0, 3.0) 10

P&L reviews - Uniform (0.5, 1.0) 10

Contract Negotiation 0.01 Exponential (28.5) 10

Budget Negotiation 0.01 Exponential (25.0) 10

PI Approval 0.02 Lognormal (5.0, 8.3) 10

DSR Approval 0.02 Lognormal (2.5, 2.8) 10

Sponsor 0.02 Lognormal (6.5, 15.9) 10

DSR USF’s Division of Sponsored Research, OCR USF’s Office of Clinical Research, P&L USF’s Division of Patents and Licensing, PI principal investigatorl
aEstimated by OCR senior personnel
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samples with equal variance was used to compare differ-
ences between groups (see Additional file 2, p. 13).

Process mapping and timing analysis
A highly aggregated version of the administrative process
associated with trial activation is depicted in Fig. 1 (for a
more granular description see Additional file 2: Figure
SI2). The administrative process is decomposed into
five major sub-processes: Initial Preparation; Contract
Negotiation; Budget Negotiation; Preparation for Western
Institutional Review Board (WIRB); and PI, USF’s Division
of Sponsored Research, and Sponsor Approvals (Final
Preparation).
The administrative process lasts on average 76.6 days

with a standard deviation of 41.1 days (see Table 2).
Contract Negotiation and Budget Negotiation are the
most time-consuming sub-processes lasting 54.9 (me-
dian = 33, SD = 50.3) and 46.3 (median = 40, SD = 34.6)
days on average, respectively. During these two sub-
processes and based on conversations with the OCR se-
nior personnel, negotiations between OCR, sponsor,
and PI are the most arduous and time-consuming activ-
ities. As observed in Fig. 1, Contract Negotiation and
Budget Negotiation are parallel sub-processes having
different durations. Since both sub-processes must be
completed before continuing to the following sub-
processes, synchronization issues between these two
generate delays in the Entire Process.

Social network analysis for Contract Negotiation and
Budget Negotiation
The process mapping and timing analysis showed that
Contract Negotiation and Budget Negotiation are the

most time- and effort-consuming duties during trial ac-
tivation. Therefore, we focused the SNA on these two
sub-processes and their participants. The question we
aim to answer here is: Who needs to be involved in the
improvement process?
During Contract Negotiation (Fig. 2) the majority of

interactions occur between OCR and sponsors. OCR
initiates more interactions than the sponsor (507 ver-
sus 346), and has the highest in- and out-degree (see
Table 3). These results highlight OCR’s active role dur-
ing contract development as well as suggesting a higher
degree of complexity during contract development activ-
ities than those of budgeting. During Budget Negotiation
(Fig. 3) the majority of interactions occur between OCR,
sponsors, and PIs. Surprisingly, sponsor and PI initiate

Fig. 1 Administrative process associated with industry-sponsored clinical trial activation at the University of South Florida. CT clinical trial, DSR
USF’s Division of Sponsored Research, IRB Institutional Review Board, OCR USF’s Office of Clinical Research, PI principal investigator, VA value-added,
WIRB Western Institutional Review Board. All durations are averages (median) in calendar days. *Estimated by OCR senior personnel

Table 2 Duration of the administrative process associated with
industry-sponsored clinical trial activation at the USF’s Office of
Clinical Research (OCR)

Sub-process Number Duration in calendar days

Average (Median, SD) IQR (Q1, Q3)

Initial Preparation - 11a -

Contract Negotiation 69 54.9 (33, 50.3) 58 (19,77)

Budget Negotiation 40 46.3 (40, 34.6) 54 (14, 68)

PI Approval 78 4.8 (4, 4.7) 6 (1, 7)

DSR Approval 78 5.5 (3, 6.2) 9 (0, 9)

Sponsor Approval 78 5.5 (3, 6.2) 9 (0, 9)

Entire Process 78 76.6 (69, 41.1) 58 (46, 101)

DSR USF’s Division of Sponsored Research, IQR interquartile range, PI principal
investigator, SD standard deviation
aEstimated by OCR senior personnel
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more interactions than OCR (153 versus 69 and 70 versus
13, respectively) suggesting that OCR has been effective in
stimulating PIs and sponsors in being more responsive
or that OCR has been inefficient in responding to PIs
and sponsors requests. Post-hoc analyses demonstrated
that OCR response time during Contract Negotiation
and Budget Negotiation are significantly lower than the
response time of the PIs and sponsors. Any process im-
provement strategy should be focused on these three
participants as well as aiming at stimulating PIs and
sponsors in being more responsive to OCR.

Simulation model
A detailed description of the simulation model can be
found in Additional file 2: Figure SI1. We validated the
simulation model, as shown in Table 4, by comparing ac-
tual versus simulated system performance measures. At
baseline we assume that 14 trials per month on average
are received at the OCR. The largest divergence was
found in the number of trials still in process (52 versus
78.6 days). Increasing the number of replications shows
no significant effect on this divergence, which is likely
caused by offsets in the model. This can be improved

Fig. 2 Social network diagram for Contract Negotiation. Each node represents a participant, each tie denotes an interaction between participants,
and each tie width denotes the frequency of interactions between two participants. The number closest to the node represents the number of
interactions started in the node to others. During Contract Negotiation the majority of interactions occur between OCR, sponsors, and USF Legal.
DSR USF’s Division of Sponsored Research, OCR USF’s Office of Clinical Research; P&L USF’s Division of Patents and Licensing, PI principal investigator

Table 3 Centrality measures for Contract Negotiation and Budget Negotiation

Sub-process Participant Degree Betweenness Closeness Bonacich’s Power Index

In Out In Out

Contract Negotiation OCR 6.0 6.0 1.5 5.0 5.0 1.9

Sponsor 5.0 5.0 1.5 5.0 5.0 1.5

PI 4.0 3.0 0.0 4.5 4.0 0.2

P&L 3.0 5.0 0.0 4.0 5.0 0.2

USF Legal 4.0 5.0 0.7 4.5 5.0 0.5

DSR 5.0 3.0 0.3 5.0 4.0 0.1

Budget Negotiation OCR 5.0 5.0 2.0 4.0 4.0 1.2

Sponsor 3.0 4.0 1.0 3.5 4.0 1.7

PI 4.0 3.0 1.0 4.0 3.5 0.9

P&L 3.0 3.0 0.0 3.5 3.5 0.3

Legal 2.0 3.0 0.0 3.0 3.0 0.1

DSR USF’s Division of Sponsored Research, OCR USF’s Office of Clinical Research, P&L USF’s Division of Patents and Licensing, PI principal investigator
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by considering collecting data from those trials that are
still in process. However, the model can still support
decision-making by providing information on delays,
durations, queue lengths, and resource utilizations. It is
important to note that the clinical study site is in

charge of either WIRB or IRB submission, not OCR.
Therefore, detailed activities related to WIRB Approval
and IRB Approval are not included in the simulation
model.
To demonstrate how the model can assist in detecting

an effective process-improvement scenario, we conducted
5 different numerical studies with the OCR as a sample
system. Note that one can test any combination of these
scenarios as demonstrated in the following experiments.

Analysis of system capacity
Between 2009 and 2013, the total number of clinical tri-
als registered in ClinicalTrials.gov has increased by 91 %
(from 83,467 to 157,371). Although in recent years there
has been a shift in industry-sponsored trials moving to
emerging countries in Eastern Europe, South America,
and Asia; still the United States dominates by a large
margin having more than eight times more clinical trial
sites than the country in second place, Germany [34].
To study the tolerance of the process in terms of the un-
certainty in the number of trials seeking activation we
conducted the following analysis. If the expected number
of trials arriving to OCR deviates from expectations,
what will be the effect on the activation time? We grad-
ually increased the average arrival rate from 14 to 24
trials per month. Our simulation results indicate that
even a slight increase would cause significant delays to

Fig. 3 Social network diagram for Budget Negotiation. Each node represents a participant; a tie denotes an interaction between participants; tie
width denotes the frequency of interactions between two participants. The number closest to the node represents the number of interactions
started in the node to others. During Budget Negotiation the majority of interactions occur between OCR, sponsor, and PI. DSR USF’s Division of
Sponsored Research, OCR USF’s Office of Clinical Research, P&L USF’s Division of Patents and Licensing, PI principal investigator

Table 4 Comparison of actual versus simulated system
performance measures. Simulated data was produced by 38
replications of the simulation model

Sub-process Average duration in calendar days

Actual Simulated (95 % CI)

Initial Preparation 11.0a 10.9 (0.1)

Contract Negotiation 54.9 51.6 (4.5)

Budget Negotiation 46.3 45.3 (3.9)

PI Approval 4.8 4.6 (0.2)

DSR Approval 2.5 2.4 (0.1)

Sponsor Approval 5.5 5.2 (0.4)

Entire Process 76.6 82.0 (3.5)

Trials arriving/leaving Average number per year

Actual Simulated (95 % CI)

Number in 147.0 143.7 (4.3)

Number out 78.0 74.5 (3.2)

Still in process 52.0 78.6 (5.1)

CI confidence interval, DSR USF’s Division of Sponsored Research, PI
principal investigator
aEstimated by OCR senior personnel
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trial activation (see Additional file 2: Figure SI3). For
instance, an increase from 14 to 16 trials per month
would increase the activation time by 11 % (from 82 to
90.7 days, 95 % confidence). Similar effect is noted in
the total idle time increasing by 24 % (from 40.1 to
49.8 days, 95 % confidence) (see Additional file 2: Figure
SI3). The queue lengths for Contract Negotiation and
Budget Negotiation would also increase by 41 % (from
18.5 to 26.1 trials, 95 % confidence) and by 43 % (from
15.2 to 21.7 trials, 95 % confidence), respectively (see
Additional file 2: Figure SI3b).

Analysis of key participants’ capacity
Contract Negotiation and Budget Negotiation have
been identified as the process performance drivers. To
optimize resource allocation, it is necessary to identify
which sub-process is causing the largest deviation in
total activation time. Here we examine the system’s
sensitivity to changes on key participants’ capacity, i.e.,
the number of trials that a participant can handle at a

given time that can be changed based on effort alloca-
tion. It is important to note that improving the capacity
for Contract Negotiation and Budget Negotiation will
require join efforts from OCR, sponsors, and PIs, due
to the existence of reciprocal activities during contract
and budget development. As shown in Fig. 4a, our
simulation results indicate that doubling the capacity
for both Contract Negotiation and Budget Negotiation
may significantly improve system performance. Average
activation time would be reduced by 28 % (from 82 to
59.3 days, 95 % confidence) and average idle time
would be reduced by 70 % (from 40.1 to 12.1 days,
95 % confidence) (Fig. 4a). Along with activation time
reductions, the average number of trials in queue for
Contract Negotiation and Budget Negotiation would be
reduced to almost zero (95 % confidence) (Fig. 4b, c,
and d). Important to note in Fig. 4a is that additional
increases of capacity may fail to further improve system
performance, as does incrementing capacity for just
one of the key participants.

Fig. 4 How additional resource capacity in Contract Negotiation and Budget Negotiation can affect system performance. Additional capacity will
reduce: a Average activation time. a Idle time. b, c and d Queue length. *Baseline scenario
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Analysis of key participants’ capacity under increased
workload
A critical assumption in the previous analyses is that
the average number of trials arriving to OCR remains
at 14 trials per month on average. To test the robust-
ness of our previous results, it is necessary to identify
process performance drivers under increased workload.
To simulate the increase workload scenario, we doubled
the average arrival rate from 14 to 28 trials per month.
Such workload increases total completion time by 40 %
(from 82 to 114.6 days, 95 % confidence) and idle time
by 110 % (from 40.1 to 84 days, 95 % confidence) (see
Additional file 2: Figure SI4a). Our simulation results
indicate that doubling the capacity for both, Contract
Negotiation and Budget Negotiation, would be neces-
sary to keep system performance near to its baseline
performance of 82 days’ average activation time. Adding
more capacity for both sub-processes would result in
further improvements by reducing average completion
time by 45 % (from 114.6 to 63.2 days, 95 % confidence)
and idle time by 83 % (from 84 to 14.4 days, 95 % confi-
dence). Important to note is that unbalanced addition
of capacity (i.e., tripling capacity for Contract Negotiation
and keeping Budget Negotiation as it is, or vice versa)
would result in no improvements. Adding capacity will re-
duce queue lengths for Contract Negotiation and Budget
Negotiation (see Additional file 2: Figures SI4c and SI4d).
However, queue length for batching will increase as
personnel increase (Additional file 2: Figure SI4b). This
is because Contract Negotiation and Budget Negoti-
ation sub-processes have different completion times.
Therefore, more trials must wait for either budget or con-
tract to finish before moving to the next sub-process.

Analysis of other participants’ capacity
Relaxing the conditions at which sub-processes other
than Contract Negotiation and Budget Negotiation are
performed represents an opportunity to save resources.
In this scenario, we assume that sub-processes outside
OCR are a cause of trial activation delay. Even though
OCR cannot control the performance of these sub-
processes, it can utilize automated reminder systems in
hopes that it will reduce their response time. It is ex-
pected that the performance of the entire process will
not change because the rate-limiting sub-processes,
Contract Negotiation and Budget Negotiation, are not
modified. As expected, our simulation results indicate
that increasing the capacity of sub-processes other than
Contract Negotiation and Budget Negotiation (see
Additional file 2: Figure SI5) would not have a statis-
tical significant (95 % confidence) effect on reducing
average activation time, idle time, or queue length. Our
findings confirm the need to focus process-

improvement efforts on contract and budget develop-
ment activities.

Analysis of processing time variability
The previous analyses show that contract development
and budgeting are the performance drivers of the
process. Regrettably, historical timing data show that
both have a high variability (34.6 and 50.3 standard devi-
ation, respectively), which is attributed to the natural
complexity of the process and a lack of coordination be-
tween personnel involved with Contract Negotiation and
Budget Negotiation. In this experiment, we evaluate the
system’s performance if the variability in both sub-
processes is reduced. We hypothesize that a better com-
munication and synchronization should reduce such
variability. We model reduction in processing variability
by replacing exponentially distributed processing times
with triangular distributed processing times. Triangular
distribution is commonly used when estimates for the
minimum, maximum, and most likely values are known
[35]. As shown in Fig. 5a, the system performance is sig-
nificantly improved in terms of time spent for each trial
at batching (from 14.2 to 10.8 days, 95 % confidence).
Such reduction was expected because of the simulated
improvement on synchronization between Contract Ne-
gotiation and Budget Negotiation. Nonetheless, these
improvements do not translate into further reductions
of activation time (Fig.5a) or queue lengths (Fig. 5b)

Discussion
This study proposes a comprehensive framework to aid
process improvement decision-making, which was used
to assess the opening of industry-sponsored clinical trials
at the USF’s Office of Clinical Research. Although sev-
eral attempts have been made to examine the oper-
ational efficiency of trial activation [6, 8–10, 13], most
of the previous work concentrates solely on a certain
aspect of improvement such as barrier identification or
process reconfiguration. More recent studies have
shown improvements using six sigma and lean manu-
facturing tools (e.g., [14, 17, 18, 22]); however, their
mass approach might not be suitable across all aca-
demic medical settings or might not go well with other
organizational cultures. We propose a framework based
on a totally different approach that maps the adminis-
trative process through VSM, identifies barriers for trial
opening through timing analysis and SNA, and exam-
ines system performance under different scenarios
through DES. The use of systematic approaches to
analyze the trial activation process, rather than case
study alone, has been recognized as a key tool to make
trials more efficient [21].
We found that the mean time to activate an industry-

sponsored clinical trial at USF is 76.6 days (median =
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69 days). The administrative process comprises 5 sub-
processes, 30 activities, 11 decision points, 5 loops, and
8 participants. Contract Negotiation and Budget Negoti-
ation are the most complex and time-consuming sec-
tions of the administrative process, lasting on average
54.9 and 46.3 days, respectively. This finding is in ac-
cordance with the work reported elsewhere [8, 9]. It is
surprising, however, that the longest sub-process is not
IRB Approval as believed by the research community.
Using SNA, we found that within Contract Negoti-

ation and Budget Negotiation the OCR, sponsor, and PI
are the most central participants. This finding was in-
corporated into the process improvement scenarios
tested in the DES model. For instance, we found that
by increasing the capacity on contract and budgeting
development at OCR the mean activation time may be
reduced by 28 %, mean idle time by 70 %, and queue
length to almost zero. However, additional increase
may not result into further improvements. To demon-
strate the extensive capabilities of our approach we suc-
cessfully simulated and analyzed four more strategies.
Besides the scenarios reported in this study, there are
other strategies that can be used to reduce activation
time and can be tested using our framework before ac-
tual implementation. For instance, the use of Master

Agreements and Previously Negotiated Terms would
make the administrative process nimble by reducing
the time spent on Contract Negotiation and Budget
Negotiation; the parallelization of activities within the
administrative process is likely to generate efficiency
improvements as shown elsewhere (e.g., [18, 36, 37]);
and, the standardization of contracts across industry,
academia, and federal agencies may reduce prolonged
delays in obtaining regulatory approvals to initiate pa-
tient enrollment [38].
Our research has limitations. First, the presented

framework relies heavily on data that are not routinely
collected. Second, validation of the proposed scenarios
has only been achieved through simulation and, there-
fore, the results may not be attainable in real settings,
where human factor analysis and change management
may be required. Third, duration estimations may rep-
resent a lower bound of the actual durations, due to the
fact that trials still in process were excluded. Fourth, in-
dustry communication between the PI and the sponsor
was not considered into the SNA. Future research
should focus on studying the interactions between PIs
and sponsors, which are likely to provide meaningful
insights to devise improvement scenarios. Finally, we
have assessed the system performance in terms of

Fig. 5 Reducing processing time variability in Contract Negotiation and Budget Negotiation would result in significant process improvements
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improvements in activation time, idle time, and queue
lengths, and not in terms of health outcomes. This is a
very critical observation and its effects are currently
overwhelming health research administration. Improve-
ments in process design do not necessarily translate to
improvements in health outcomes. Additional research
is required to address this limitation. Nevertheless, we
believe that in the hands of clinical research adminis-
trators, the proposed framework is useful to assess the
process of activating trials.

Conclusions
We present a novel approach to understanding drivers
of process performance during the opening of clinical
trials. Specifically, we analyzed the current state of the
process using VSM, described the interactions of the
various process participants using SNA, and evaluated
the potential impact of process modifications using
DES. We advance previous research by incorporating
SNA to better understand the roles and interactions of
the various participating entities, as well as DES to
model potential modifications and scenarios of increased
workload. In the hands of clinical research administrators,
our approach holds promise for improving efficiency and
supporting better-informed prioritization and resource al-
location. Overcoming administrative barriers to opening
clinical trials may result in augmenting patient treatment
options without compromising research integrity or pa-
tient safety. Deploying systems engineering tools provide
the ability to leverage naturally generated administrative
information to perform more evidence-based manage-
ment of clinical trials.
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Additional file 1: Process duration data for the trials included in
the study. (XLSX 83 kb)

Additional file 2: Figure SI1. Simulation logic for the administrative
process associated with industry-sponsored clinical trial activation.
Abbreviations: CDA/NDA, confidential disclosure agreement or non-
disclosure agreement; CT, clinical trial; DSR, USF’s Division of Sponsored
Research; PI, principal investigator. Figure SI2. Administrative procedure
involved in the opening of clinical trials managed by the Office of Clinical
Research at the University of South Florida. At the level of granularity, the
process for activating an industry-sponsored clinical trial at USF comprises
30 steps, 11 decisions, 4 loops, and 8 participants. Abbreviations: CDA/NDA,
confidential disclosure agreement or non-disclosure agreement; CTA, clinical
trial agreement; OCR, USF’s Office of Clinical Research; P&L, USF’s
Patents and Licensing; PI, principal investigator; SRA, OCR’s Senior
Research Assistant; WIRB, Western Institutional Review Board. Figure
SI3. Analysis of system capacity. Increasing the number of clinical
trials arriving at the Office of Clinical Research. Slight increase will
cause statistically significant delays to clinical trial activation, increase
idle time, and queue lengths. Abbreviations: CTs, clinical trials. Figure
SI4. Analysis of key participants’ capacity under increased workload.
Effect of personnel addition under an increased demand scenario of
28 clinical trials per month average. At least two new employees must
be assigned to OCR in order to maintain the baseline system performance.
Abbreviations: CTs, clinical trials. *Baseline scenario. Figure SI5. Analysis of

other participants’ capacity. Reducing response time from participants
outside USF’s Office of Clinical Research. Reducing response time would
not have a statistically significant (95 % confidence) effect on average
activation time, idle time, and queue length. Figure SI6. T test comparing
the mean duration of Contract Negotiation with and without data of those
clinical trials still in process. Figure SI7. T test comparing the mean duration
of Budget Negotiation with and without data of those clinical trials still in
process. (DOCX 3073 kb)
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